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Simple learning algorithm for the traveling salesman problem

Kan Chen
Department of Computational Science, National University of Singapore, Singapore 119260

~Received 7 October 1996; revised manuscript received 3 December 1996!

We propose a learning algorithm for solving the traveling salesman problem based on a simple strategy of
trial and adaptation.~i! A tour is selected by choosing cities probabilistically according to the ‘‘synaptic’’
strengths between cities. ii! The ‘‘synaptic’’ strengths of the links that form the tour are then enhanced
~reduced! if the tour length is shorter~longer! than the average result of the previous trials. We perform
extensive simulations of the random distance traveling salesman problem. For sufficiently slow learning rates,
near-optimal tours can be obtained with the average tour lengths close to the lower bounds for the shortest tour
lengths.@S1063-651X~97!12603-4#

PACS number~s!: 07.05.Mh, 89.80.1h, 02.60.Pn
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Many problems in science and engineering can be form
lated in terms of optimization problems. In physics, e
amples of optimization include predicting the most sta
configuration of molecules and finding the ground state c
figuration of spin glasses. Optimization problems are usu
easy to formulate but hard to solve. Particularly hard ar
class of interesting optimization problems that are NP co
plete: an exact solution requires a number of computatio
steps that grows exponentially with the size of the proble
The traveling salesman problem~TSP!, which consists of
finding the shortest closed tour connecting all cities in a m
is a classic example and a good testing ground for optim
tion methods. Because exact solutions are almost impos
to obtain the aim is to find near-optimal solutions.

A few optimization methods, based on ideas from phys
and biology, have been developed recently which lead
rather goodgeneral purposealgorithms@1# for solving opti-
mization problems. They have been successfully applied
wide range of practical problems. One of them is a stocha
algorithm known as optimization by simulated anneali
~OSA! @2#. The algorithm consists of an evolution accordi
to Monte Carlo dynamics performed at a sequence of ef
tive temperatures to simulate the annealing effect. The
chastic dynamics allows access to a larger region of confi
ration space than simple ‘‘quenching’’ methods, and help
reaching a good solution. However, the Monte Carlo sea
is based on the evolution of asingle configuration, thus is
often confined to a limited region of configuration space a
is not efficient in searching through the configuration spa
For this reason the performance of OSA is quite sensitive
the choice of an annealing schedule and the initial confi
ration. Another general purpose algorithm which has b
used extensively is the genetic algorithm~GA! @4#, which
has also been applied to the traveling salesman prob
@5,6#. The genetic algorithm demonstrates the importance
keeping many configurations~‘‘species’’! in the optimization
process. The algorithm mimics the evolutionary tools of
production, mating, and mutation. It has been shown that
algorithm performs well for small-size TSP’s@5#. For large-
size problems, however, it is not clear that current gen
algorithms are efficient because one has to keep a signifi
number of configurations. There are many variants of th
two general algorithms using different local search metho
551063-651X/97/55~6!/7809~4!/$10.00
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For example, the annealing algorithm can be improved us
the multicanonical method; this has also been applied to T
@3#. For the general performance of such algorithms,
reader is referred to the recent review article by Johnson
McGeoch@7#.

In this paper, we propose a simple learning algorith
which appears to have the advantages of both the OSA
genetic algorithms. The preliminary version of our algorith
was presented in Ref.@9#. Our algorithm may be viewed as
neural network algorithm, but differs completely from
Hopfield and Tank’s approach@8#, which is equivalent to
gradient descent of an energy function with the tour length
a major term. In our approach the cities can be viewed
‘‘neurons’’ and the connections between them as ‘‘sy
apses.’’ Initially a synaptic strengthwi j is assigned to each
pair of cities$ i j %:

wi j5e2di j /T, ~1!

wheredi j is the distance between them andT is a parameter
which controls the relative initial strengths of synapses. T
basic ingredients in the algorithm aretrial and adaptation:
first select a tour; then modify the synaptic strengths of
links which formed the tour to favor tours with shorter to
lengths by comparison. This procedure is then repeated.

Selection of tour. A tour is selected by picking cities se
quentially with the probability determined by the synap
strengths. A simple selection procedure consists of the
lowing steps. The first cityi 1 is picked at random, the secon
one i 2 is picked with probabilityPi2i1

}wi2i1
, then the third

one i 3 is picked among available cities with probabilit
Pi3i2

}wi3i2
, and so on. For computational efficiency, how

ever, we set up a priority list of neighbors for each city a
use the priority lists to generate the tour. The first two po
tions in the priority list are selected probabilistically wit
probabilities proportional to the corresponding synap
strengths with the neighbors, and the remaining position
the list are ordered according to the synaptic strengths of
remaining neighbors. Since the synaptic strengths cha
slowly during the simulation, the new priority lists can be s
up quickly before each trial using the previous lists. The to
is now generated as follows. The first cityi 1 is again picked
at random, the second cityi 2 chosen as the first available cit
7809 © 1997 The American Physical Society
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7810 55BRIEF REPORTS
in the priority list of i 1, the third cityi 3 is chosen as the firs
available city in the priority list ofi 2, and so on.

The tour obtained is then improved using the exhaus
search for two-bond rearrangements@10#. This generates the
tour of the current trial, which will be used for compariso
with the tours obtained from the previous trials. The sea
for two-bond rearrangements allows tours of better qual
particularly in the beginning of the simulation process, to
used in tour evaluation and modification of synap
strengths. This helps to improve the learning algorithm s
nificantly. Note that with the use of the priority lists th
exhaustive search can be made efficient, because only
links with low priority need to be swapped. As the learni
process converges, the configurations picked using the p
ity lists are already near-optimal, and very few two-bo
rearrangements are needed to improve them.

Modification of synaptic strengths. The tour obtained in
the current trial is compared with the tours obtained in
previous trials. In our simulation we keep a number of to
~denoted bym below! for the purpose of comparison. Le
$ i 1i 2••• i N% denote the current tour and$ i 18i 28••• i N8 % denote
one of the previous tours. Let the tour lengths for these
tours bed andd8, respectively. The comparison of these tw
tours leads to the following modification of the synap
strengths of the links that form the tours:

wi l i l11

new 5wi l i l11

old e2
a
m ~d2d8!, l51, . . . ,N,

wi
l8 i l118
new

5wi
l8 i l118
old

e2
a
m ~d82d!, l51, . . . ,N, ~2!

wherei N115 i 1 andi N118 5 i 18 . a represents the modificatio
rate of synaptic strengths~sincem comparisons are made a
each stage, the coefficient in the exponent is written
a/m). According to this rule, if the current tour length
shorter ~longer! than the previous one, the correspondi
synaptic strengths for the links that form the tour are
hanced~reduced!. Another tour selection is made acording
the prescription given earlier and the procedure repeated
learning advances, some links are gradually abando
while others are increasingly favored: eventually the se
tion converges to a near-optimal tour.

In this paper, we study the random distance TSP, in wh
the distances between cities are independent random
ables between 0 and 1. Part of the reason we choose
random distance TSP is that many algorithms based
simple local search methods give very poor results for th
instances. Besides, we can also compare our results with
extensive numerical studies of Krauth and Me´zard@11#, who
also obtained exactly the length ('2.0415) of the optimal
tour in the limit of a large number of cities for this problem

Let us first discuss the choice of the parameters use
our simulation. The parameterT @see Eq.~1!# is chosen to be
of the order of the shortest distance so that the syna
strength for the long distance link is made very small i
tially. In our simulation we simply chooseT51/N, where
N is the number of cities. The most important paramete
our simulation isa, which controls the rate of learning. Th
choice of the parameterm is not crucial. In our simulations
we simply fixm550 ~i.e., we keep the 50 most recent tour!.
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The general performance of our algorithm is illustrated
our study of a 200-city TSP. The result of the simulati
with a50.03 is plotted in Fig. 1, which shows both th
average tour lengths and the shortest tour length in suc
sive intervals of 200 trials. As can be seen from the figu
the adaptive selection of tours converges to a near-opti
one in the process of learning. At the beginning, the to
length is comparable to that obtained by the exhaus
search for two-bond rearrangements. As learning advan
competition and ‘‘mating’’ of the tour segments in the tou
used for comparison are effectively taking place throu
modification of synaptic strengths — this leads to tours w
shorter and shorter tour lengths. The improvement due
learning is quite drastic: the slow learning process redu
the tour lengths obtained at the begining of the learning p
cess by as much as 40%. The difference between the ave
tour length and the shortest one in a given interval can
thought of as a measure of the effective ‘‘temperature,’’
analogy with OSA; during the course of the simulation t
effective temperature decreases as the learning process
verges. The dependence of the performance of the algor
on the learning ratea is illustrated in Fig. 2, in which suc-
cessive average tour lengths in the intervals of 200 trials
plotted for a50.03, 0.12, 0.48, and 1.92. As one mig
expect, better results are achieved for slower learning r
~smalla), but with longer computer time. The longest op
mization withN5400 anda50.03 requires about 20 min o
a 200 MHz SGI Power Challenge L.

To get a comprehensive picture of the performance of
algorithm and its dependence on the parameters, we h
performed extensive simulations forN525, 50, 100, 200,
and 400 with the number of samples equal to 800, 400, 2
100, and 50, respectively. Large numbers of samples
needed for small-size systems to obtain more reliable a
age tour lengths, because of the larger statistical fluctuat

FIG. 1. Tour length vs number of trials for the optimization of
200-city random distance TSP: The upper curve shows the ave
tour lengths calculated in consecutive intervals of 200 trials;
lower curve shows the shortest tour lengths in these intervals. D
are taken every 200 trials, and the optimization is performed w
a50.03.
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in the best tour lengths for smaller sample sizes. In e
simulation both the shortest tour length and the numbe
trials needed to reach the shortest tour length are recor
Note that the actual CPU used for a given number of tr
n is not proportional ton, because many two-bond rea
rangements are needed at the start of the learning proces
almost no two-bond rearrangements are needed at the e
the process. The average best tour lengths for these sim
tions are listed~together with the average number of tria
needed to reach the best lengths! in Table I and shown in
Fig. 3.

We now compare our results with the known resu
Krauth and Me´zard@11#, used the Lagrangian one-tree rela
ation of Held and Karp@12# to obtain a lower bound for the

FIG. 2. Average tour length vs number of trials for the optim
zations witha50.03, 0.12, 0.48, and 1.92. The simulations use
same 200-city sample for which the results shown in Fig. 1
obtained.
h
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d.
s
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best tour length and the Lin-Kernighan algorithm@13# to
obtain an upper bound. The performance of the L
Kernighan algorithm depends somewhat on implementat
Better results are obtained in the implementation presen
in Ref. @7#. The Lin-Kernighan algorithm is generally re
garded as one of the best algorithms for the TSP@7# ~in
particular for the random distance TSP, where many ot
algorithms, including simulated annealing, do not give go
results!. Our results are generally better than those obtai

e
e

FIG. 3. Tour length vs 1/N (N is the number of cities! for the
random distance TSP. The data on the top of the figure are obta
using the iterative improvement method of exhaustive search
two-bond rearrangements; below it, in order of decreasing t
lengths, are a series of the best tour lengths obtained u
a51.92, 0.48, 0.12, and 0.03. Each data point represents an a
age over 800, 400, 200, 100, and 50 samples forN525, 50, 100,
200, and 400 cities, respectively.
gth for
ults
TABLE I. Average best tour length and average number of trials needed to reach the best tour len
a set of learning ratea and for the number of citiesN525, 50, 100, 200, and 400. For comparison, the res
obtained using the exhaustive search for two-bond rearragements~2-opt! are also listed in the table.

Best tour length obtained and number of trials required
N/a 0.03 0.12 0.48 1.92 2-opt

25 2.01960.013 2.01960.013 2.02060.013 2.03060.013 2.39460.015
1207 463 169 65

50 2.03260.013 2.03560.013 2.04860.013 2.11160.013 2.67360.016
7008 2004 571 174

100 2.05260.013 2.06460.013 2.09960.013 2.23060.013 2.99860.019
19044 5205 1466 418

200 2.05860.014 2.10860.014 2.17460.014 2.41560.014 3.37560.021
42683 11731 2948 894

400 2.08460.014 2.12560.013 2.23460.014 2.56760.015 3.65960.030
85775 21999 7107 1891
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7812 55BRIEF REPORTS
by the Lin-Kernighan algorithm implemented by Krauth a
Mézard ~see Fig. 1. of Ref.@11#! even witha50.48. It is
comparable with the Lin-Kernighan results of Ref.@7#, with
a50.03. Note that our results forN525 and 50 using
a50.03 and 0.12 are almost the same as the correspon
lower bounds, while our results forN5100, 200, and 400
using a50.03 are within 5% of the corresponding low
bounds~see Fig. 1 of Ref.@11#!. In contrast, the results o
simulated annealing using two-bond rearrangement are
and 37% above the lower bounds forN5100 andN5316,
respectively@7#. With smaller learning ratea we can get
even better results. This shows that a simple learning s
egy can lead to a very good optimization algorithm. Ho
ever, like the other algorithms which involve stochas
searches, our algorithm is slow compared with the determ
istic search algorithm like the Lin-Kernighan algorithm. T
illustrate the CPU usage of our algorithm, we monitor t
CPU used in the optimization of a 200-city sample. The b
tour lengths obtained for a given amount of CPU used
shown in Fig. 4. For comparison, we also show the res
from the Lin-Kernighan algorithm. Here we use the short
tour length ofn independent Lin-Kernighan runs~starting
from different initial configurations! with n51, 2, 4, . . . ,
and 1024. The CPU used isn times the CPU used for th
single Lin-Kernighan run, which averages about 0.31 s
the SGI Power Challenge. For shorter CPU time used,
Lin-Kernighan algorithm is clearly superior. However, give
a longer CPU time, our learning algorithm can give bet
results.

In conclusion, we have demonstrated how a complex
timization problem can be solved by a simple learning st
egy of trial and adaptation. The learning process is qu
similar to the evolution process in genetic algorithms. As
GA, the algorithm has the advantage that it is based on
bal searches in configuration space, where configuration
apart in configuration space are searched. But instea
keeping many tour configurations explicitly as in GA’s w
use ‘‘synaptic strengths’’ to generate tour configuratio
probabilistically. Thus many tour configurations are impl
itly kept for effective mutation and mating through the u
dating of the ‘‘synaptic strengths.’’ The version of the lear
ing algorithm presented in this paper for solving TSP m
not be competitive, but a better algorithm can be deriv
using more sophisticated local search methods~such as
three-bond and four-bond moves for TSP!. What we have
s
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shown is that the learning process based on gradual cha
on ‘‘synaptic strengths’’ can greatly improve the results o
tained by the corresponding local search methods. We
lieve that this learning strategy will be very valuable f
other optimization problems, in particular the ones whe
sophisticated local search algorithms have not been fou
Currently we are applying the learning algorithm to find t
ground state of spin glasses. Preliminary results show
this simple learning strategy is also very effective in the s
glass problem.

We thank C. Jayaprakash for a critical reading of t
manuscript and for many helpful comments and suggestio

FIG. 4. Best tour length (L) obtained vs CPU time~of SGI
Power Challege L! t used.L(t) represents the best tour length o
tained before timet. The optimizations are done witha50.03,
0.12, and 0.48, and on the same 200-city sample for which
results shown in Fig. 1 is obtained. For comparison, the best
length obtained using multiple Lin-Kernighan runs is also show
The number of Lin-Kernighan runs used is 1, 2, 4, 8,. . . , and
1024, respectively.
.
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