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Simple learning algorithm for the traveling salesman problem
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We propose a learning algorithm for solving the traveling salesman problem based on a simple strategy of
trial and adaptation(i) A tour is selected by choosing cities probabilistically according to the “synaptic”
strengths between cities.) iThe “synaptic” strengths of the links that form the tour are then enhanced
(reduced if the tour length is shorteflongen than the average result of the previous trials. We perform
extensive simulations of the random distance traveling salesman problem. For sufficiently slow learning rates,
near-optimal tours can be obtained with the average tour lengths close to the lower bounds for the shortest tour
lengths.[S1063-651X97)12603-4

PACS numbg(s): 07.05.Mh, 89.80th, 02.60.Pn

Many problems in science and engineering can be formuFor example, the annealing algorithm can be improved using
lated in terms of optimization problems. In physics, ex-the multicanonical method; this has also been applied to TSP
amples of optimization include predicting the most stable[3]. For the general performance of such algorithms, the
configuration of molecules and finding the ground state conteader is referred to the recent review article by Johnson and
figuration of spin glasses. Optimization problems are usuallyMcGeoch[7].
easy to formulate but hard to solve. Particularly hard are a In this paper, we propose a simple learning algorithm
class of interesting optimization problems that are NP comWhich appears to have the advantages of both the OSA and
plete: an exact solution requires a number of computationgJ€netic algorithms. The preliminary version of our algorithm
steps that grows exponentially with the size of the problemWas presented in Ref9]. Our algorithm may be viewed as a
The traveling salesman problefSP, which consists of neural network algorithm, but differs completely from
finding the shortest closed tour connecting all cities in a maptiopfield and Tank’s approact8], which is equivalent to
is a classic example and a good testing ground for optimizagradient descent of an energy function with the tour length as
tion methods. Because exact solutions are almost impossibfe Major term. In our approach the cities can be viewed as
to obtain the aim is to find near-optimal solutions. “neurons” and the connections between them as “syn-

A few optimization methods, based on ideas from physicgpses.” Initially a synaptic strengtl;; is assigned to each
and biology, have been developed recently which lead tdair of cities{ij}:
rather goodgeneral purposalgorithms[ 1] for solving opti- L dT
mization problems. They have been successfully applied to a wij=e e @)
wide range of practical pr_ob_lem_s. One Of. them is a StOCha.‘St'gvheredi- is the distance between them ahds a parameter
algorithm known as optimization by simulated anneallngWhich C(])ntrols the relative initial strengths of synapses. The
(OSA) [2]. The algorithm consists of an evolution according :

to Monte Carlo dvnamics performed at a sequence of effe basic ingredients in the algorithm ateal and adaptation
) y 1cs p Seq “first select a tour; then modify the synaptic strengths of the
tive temperatures to simulate the annealing effect. The st

. qfnks which formed the tour to favor tours with shorter tour

; . " - H’engths by comparison. This procedure is then repeated.
ration space than simple “quenching” methods, and helps in Selection of tourA tour is selected by picking cities se-

reaching a good solution. However, the Monte Carlo search - . P . .
is baseg or? the evolution of single configuration, thus is quentially with the probability determined by the synaptic

; - ) ; . trengths. A simple selection procedure consists of the fol-

often confined to a limited region of configuration space an . N N
. N . : : owing steps. The first city, is picked at random, the second
is not efficient in searching through the configuration space,  ".~." % . o )

: . . - onei, is picked with probabilityP; ; «w; ; , then the third
For this reason the performance of OSA is quite sensitive to' = ™~ "~ 7 faly Ty T o
the choice of an annealing schedule and the initial configuOn€ iz is picked among available cities with probability
ration. Another general purpose algorithm which has beefii,*Wi,i,» @and so on. For computational efficiency, how-
used extensively is the genetic algorit(i@A) [4], which  ever, we set up a priority list of neighbors for each city and
has also been applied to the traveling salesman problemse the priority lists to generate the tour. The first two posi-
[5,6]. The genetic algorithm demonstrates the importance ofions in the priority list are selected probabilistically with
keeping many configuratiori8species”) in the optimization  probabilities proportional to the corresponding synaptic
process. The algorithm mimics the evolutionary tools of re-strengths with the neighbors, and the remaining positions in
production, mating, and mutation. It has been shown that ththe list are ordered according to the synaptic strengths of the
algorithm performs well for small-size TSH'S]. For large- remaining neighbors. Since the synaptic strengths change
size problems, however, it is not clear that current genetislowly during the simulation, the new priority lists can be set
algorithms are efficient because one has to keep a significanp quickly before each trial using the previous lists. The tour
number of configurations. There are many variants of thess now generated as follows. The first cityis again picked
two general algorithms using different local search methodsat random, the second city chosen as the first available city
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in the priority list ofi4, the third cityis is chosen as the first

. . . .. . —e— Average Tour Length
available city in the priority list of,, and so on. —=— Best Tour Length

The tour obtained is then improved using the exhaustive
search for two-bond rearrangemefit]. This generates the 3
tour of the current trial, which will be used for comparison
with the tours obtained from the previous trials. The search
for two-bond rearrangements allows tours of better quality,
particularly in the beginning of the simulation process, to be
used in tour evaluation and modification of synaptic
strengths. This helps to improve the learning algorithm sig-
nificantly. Note that with the use of the priority lists the
exhaustive search can be made efficient, because only the
links with low priority need to be swapped. As the learning
process converges, the configurations picked using the prior-
ity lists are already near-optimal, and very few two-bond
rearrangements are needed to improve them. . -

Modification of synaptic strengthhe tour obtained in : : , :

Tour Length

2

1
the current trial is compared with the tours obtained in the 0 10000 20000 30000 40000 50000
previous trials. In our simulation we keep a number of tours Number of Trials
(denoted bym below) for the purpose of comparison. Let
{iqi,---iy} denote the current tour arfd]is- - -ij} denote FIG. 1. Tour length vs number of trials for the optimization of a

one of the previous tours. Let the tour lengths for these twc00-city random distance TSP: The upper curve shows the average
tours bed andd’, respectively. The comparison of these two tour lengths calculated in consecutive intervals of 200 trials; the

tours leads to the following modification of the synaptic lower curve shows the.shortest tour Ien.gths in thgse intervals. Qata
. . are taken every 200 trials, and the optimization is performed with
strengths of the links that form the tours:

a=0.03.
new _old - Z(d-d") I=1... N The general performance of our algorithm is illustrated in
e TN ’ o our study of a 200-city TSP. The result of the simulation
with @=0.03 is plotted in Fig. 1, which shows both the
W — o e—%(d’—d), I=1,... N, (2)  average tour lengths and the shortest tour length in succes-
e e sive intervals of 200 trials. As can be seen from the figure,

the adaptive selection of tours converges to a near-optimal

whereiy =i, andiy,;=i}. « represents the modification one in the process of learning. At the beginning, the tour
rate of synaptic strengthsincem comparisons are made at length is comparable to that obtained by the exhaustive
each stage, the coefficient in the exponent is written asearch for two-bond rearrangements. As learning advances,
a/m). According to this rule, if the current tour length is competition and “mating” of the tour segments in the tours
shorter (longey than the previous one, the correspondingused for comparison are effectively taking place through
synaptic strengths for the links that form the tour are en-modification of synaptic strengths — this leads to tours with
hancedreduced. Another tour selection is made acording to shorter and shorter tour lengths. The improvement due to
the prescription given earlier and the procedure repeated. Agarning is quite drastic: the slow learning process reduces
learning advances, some links are gradually abandonethe tour lengths obtained at the begining of the learning pro-
while others are increasingly favored: eventually the seleceess by as much as 40%. The difference between the average
tion converges to a near-optimal tour. tour length and the shortest one in a given interval can be

In this paper, we study the random distance TSP, in whichhought of as a measure of the effective “temperature,” in
the distances between cities are independent random vagnalogy with OSA; during the course of the simulation the
ables between 0 and 1. Part of the reason we choose thfective temperature decreases as the learning process con-
random distance TSP is that many algorithms based owerges. The dependence of the performance of the algorithm
simple local search methods give very poor results for thesen the learning ratev is illustrated in Fig. 2, in which suc-
instances. Besides, we can also compare our results with thessive average tour lengths in the intervals of 200 trials are
extensive numerical studies of Krauth and2ded[11], who  plotted for «=0.03, 0.12, 0.48, and 1.92. As one might
also obtained exactly the length=@.0415) of the optimal expect, better results are achieved for slower learning rates
tour in the limit of a large number of cities for this problem. (small &), but with longer computer time. The longest opti-

Let us first discuss the choice of the parameters used imization withN =400 anda=0.03 requires about 20 min on
our simulation. The paramet@&r[see Eq(1)] is chosen to be a 200 MHz SGI Power Challenge L.
of the order of the shortest distance so that the synaptic To get a comprehensive picture of the performance of this
strength for the long distance link is made very small ini-algorithm and its dependence on the parameters, we have
tially. In our simulation we simply choos&=1/N, where performed extensive simulations fot=25, 50, 100, 200,
N is the number of cities. The most important parameter inand 400 with the number of samples equal to 800, 400, 200,
our simulation ise, which controls the rate of learning. The 100, and 50, respectively. Large numbers of samples are
choice of the parameten is not crucial. In our simulations needed for small-size systems to obtain more reliable aver-
we simply fixm=50 (i.e., we keep the 50 most recent tours age tour lengths, because of the larger statistical fluctuations
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FIG. 2. Average tour length vs number of trials for the optimi-
zations witha=0.03, 0.12, 0.48, and 1.92. The simulations use the FIG. 3. Tour length vs N (N is the number of citiesfor the
same 200-city sample for which the results shown in Fig. 1 areandom distance TSP. The data on the top of the figure are obtained
obtained. using the iterative improvement method of exhaustive search for

two-bond rearrangements; below it, in order of decreasing tour

in the best tour lengths for smaller sample sizes. In eac}gndths, are a series of the best tour lengths obtained using
simulation both the shortest tour length and the number of=1.92, 0.48, 0.12, and 0.03. Each data point represents an aver-
trials needed to reach the shortest tour length are recordef€ over 800, 400, 200, 100, and 50 samplesNer25, 50, 100,
Note that the actual CPU used for a given number of trial00: and 400 cities, respectively.
n is not proportional ton, because many two-bond rear-
rangements are needed at the start of the learning process dnest tour length and the Lin-Kernighan algoritifih3] to
almost no two-bond rearrangements are needed at the end aiftain an upper bound. The performance of the Lin-
the process. The average best tour lengths for these simulkernighan algorithm depends somewhat on implementation.
tions are listedtogether with the average number of trials Better results are obtained in the implementation presented
needed to reach the best lengtis Table | and shown in in Ref. [7]. The Lin-Kernighan algorithm is generally re-
Fig. 3. garded as one of the best algorithms for the TSP (in

We now compare our results with the known results.particular for the random distance TSP, where many other
Krauth and Meard[11], used the Lagrangian one-tree relax- algorithms, including simulated annealing, do not give good
ation of Held and Karp12] to obtain a lower bound for the result3. Our results are generally better than those obtained

TABLE I. Average best tour length and average number of trials needed to reach the best tour length for
a set of learning rate and for the number of citied =25, 50, 100, 200, and 400. For comparison, the results
obtained using the exhaustive search for two-bond rearragerf®nfs) are also listed in the table.

Best tour length obtained and number of trials required

N/ a 0.03 0.12 0.48 1.92 2-opt

25 2.019:0.013 2.0190.013 2.026:0.013 2.036:0.013 2.3940.015
1207 463 169 65

50 2.032-0.013 2.0350.013 2.0480.013 2.11#0.013 2.67%30.016
7008 2004 571 174

100 2.052£0.013 2.0640.013 2.09%0.013 2.23@¢0.013 2.9980.019
19044 5205 1466 418

200 2.058-0.014 2.1080.014 2.1740.014 2.415:0.014 3.375%:0.021
42683 11731 2948 894

400 2.084:0.014 2.125:0.013 2.2340.014 2.56%0.015 3.659-0.030
85775 21999 7107 1891
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by the Lin-Kernighan algorithm implemented by Krauth and

Mézard (see Fig. 1. of Ref[11]) even with«=0.48. It is o Zj?g
comparable with the Lin-Kernighan results of REf], with e 4048
a=0.03. Note that our results foN=25 and 50 using —— LK
a=0.03 and 0.12 are almost the same as the corresponding 3

lower bounds, while our results fad=100, 200, and 400
using «=0.03 are within 5% of the corresponding lower
bounds(see Fig. 1 of Ref[11]). In contrast, the results of
simulated annealing using two-bond rearrangement are 12%
and 37% above the lower bounds fide=100 andN= 316,
respectively[7]. With smaller learning ratex we can get
even better results. This shows that a simple learning strat-
egy can lead to a very good optimization algorithm. How-
ever, like the other algorithms which involve stochastic
searches, our algorithm is slow compared with the determin-
istic search algorithm like the Lin-Kernighan algorithm. To
illustrate the CPU usage of our algorithm, we monitor the
CPU used in the optimization of a 200-city sample. The best
tour lengths obtained for a given amount of CPU used are
shown in Fig. 4. For comparison, we also show the results . . . . | .
from the Lin-Kernighan algorithm. Here we use the shortest 0 50 100 150 200 250 300
tour length ofn independent Lin-Kernighan runStarting
from different initial configurationswith n=1, 2, 4,...,
and 1024. The CPU used istimes the CPU used for the
single Lin-Kernighan run, which averages about 0.31 s on
the SGI .Power Challeng_e. For Shorter.CPU time used’ th ained before timeg. The optimizations are done with=0.03,
Lin-Kernighan algorithm is clearly superior. However, given . :
longer CPU time, our learning algorithm can give bettero'lz’ and 0.48, and on the same 200-city sample for which the
a 9 ’ g ag 9 results shown in Fig. 1 is obtained. For comparison, the best tour
results. . length obtained using multiple Lin-Kernighan runs is also shown.
In conclusion, we have demonstrated how a complex opthe number of Lin-Kernighan runs used is 1, 2, 4, 8,, and
timization problem can be solved by a simple learning strat- oo respectively.
egy of trial and adaptation. The learning process is quite

similar to the evolution process in genetic algorithms. As in ) )
GA, the algorithm has the advantage that it is based on g|oshown is that the learning process based on gradual changes

bal searches in configuration space, where configurations f&0 “synaptic strengths™ can greatly improve the results ob-
apart in configuration space are searched. But instead éined by the corresponding local search methods. We be-
keeping many tour configurations explicitly as in GA’s we lieve that this learning strategy will be very valuable for
use “synaptic strengths” to generate tour configurationsother optimization problems, in particular the ones where
probabilistically. Thus many tour configurations are implic- sophisticated local search algorithms have not been found.
itly kept for effective mutation and mating through the up- Currently we are applying the learning algorithm to find the
dating of the “synaptic strengths.” The version of the learn-ground state of spin glasses. Preliminary results show that
ing algorithm presented in this paper for solving TSP maythis simple learning strategy is also very effective in the spin
not be competitive, but a better algorithm can be derivedjlass problem.

using more sophisticated local search methdslsch as We thank C. Jayaprakash for a critical reading of the
three-bond and four-bond moves for T/SRVhat we have manuscript and for many helpful comments and suggestions.
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FIG. 4. Best tour lengthl{) obtained vs CPU timdof SGI
ower Challege Lt used.L(t) represents the best tour length ob-
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